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State-of-the-art systems, whether in servers or desktops, provide ample computational and storage resources

to allow multiple simultaneously executing potentially parallel applications. However, performance tends to

be unpredictable, being a function of algorithmic design, resource allocation choices, and hardware resource

limitations.

In this article, we introduce MAPPER, a manager of application performance via parallel efficiency regula-

tion. MAPPER uses a privileged daemon to monitor (using hardware performance counters) and coordinate

all participating applications by making two coupled decisions: the degree of parallelism to allow each ap-

plication to improve system efficiency while guaranteeing quality of service (QoS), and which specific CPU

cores to schedule applications on. The QoS metric may be chosen by the application and could be in terms of

execution time, throughput, or tail latency, relative to the maximum performance achievable on the machine.

We demonstrate that using a normalized parallel efficiency metric allows comparison across and cooperation

among applications to guarantee their required QoS. While MAPPER may be used without application or

runtime modification, use of a simple interface to communicate application-level knowledge improves MAP-

PER’s efficacy. Using a QoS guarantee of 85% of the IPC achieved with a fair share of resources on the machine,

MAPPER achieves up to 3.3× speedup relative to unmodified Linux and runtime systems, with an average

improvement of 17% in our test cases. At the same time, MAPPER violates QoS for only 2% of the applica-

tions (compared to 23% for Linux), while placing much tighter bounds on the worst case. MAPPER relieves

hardware bottlenecks via task-to-CPU placement and allocates more CPU contexts to applications that ex-

hibit higher parallel efficiency while guaranteeing QoS, resulting in both individual application performance

predictability and overall system efficiency.
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1 INTRODUCTION

Present-day computer systems, whether in the cloud, the datacenter, or in desktops, have an abun-
dance of compute, memory, storage, and communication resources. These systems are typically
able to host multiple, simultaneously active, potentially parallel applications successfully. How-
ever, overall system utilization efficiency is often low especially when applications have low paral-
lel efficiency, or is achieved at the expense of individual application performance [13, 21, 22, 44, 45].
Extracting the best performance from a given system even when an individual parallel application
has exclusive use of the system often requires considerable user expertise [1, 34].

The parallel efficiency of an application (speedup relative to the use of a single hardware con-
text normalized by the number of hardware contexts employed) is impacted by algorithmic de-
sign and by system capability and management. Algorithmic design can result in issues such as
load imbalance, contention for synchronization, inter-task dependencies, and data sharing. The
impact of these factors on performance is dependent on system capability and management. Sys-
tem capability is a function of available resources. Demand for resources must be managed at the
system level. Resource demand from both individual parallel applications and from other si-
multaneously executing applications can result in resource contention and saturation. Resource
contention and saturation often lead to performance degradation due to the resulting queuing
delays. Thus, system-level resource management, the focus of this article, can have a significant
impact on both overall system efficiency and individual application performance.

Utilizing resources efficiently and fairly has received considerable attention [6, 8, 14, 20, 21].
However, transparently achieving good performance on any given system for individual applica-
tions (performance portability) while simultaneously ensuring overall system resource utilization
efficiency has remained an elusive goal. In this article, we present MAPPER,1 a system that man-
ages application performance via parallel efficiency regulation to achieve the above simultaneous
goals without the need for user-level expertise and understanding of system properties. MAPPER
monitors and coordinates all participating applications by making two coupled decisions: how
much parallelism to afford to each application, and which specific CPU cores to schedule appli-
cations on. We focus on providing both good individual application performance (using a well-
defined notion of fairness and quality of service) and overall system-wide resource efficiency.
MAPPER contains four distinct elements:

• Hardware performance counter-based characterization of application resource needs and
bottlenecks;
• Prioritized compute resource allocation to applications based on resource needs and quality

of service/fairness guarantees;
• Task-to-compute-resource mapping (a refinement of the heuristics developed in our sharing-

aware mapping work [44, 45]) to alleviate bottlenecks and reduce compute, bandwidth, and
memory contention, bandwidth utilization, and latency of data access;

1Early results were presented as a poster at the 2019 Symposium on the Principles and Practice of Parallel Program-

ming [46].
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• An optional bidirectional interface that provides the resource management system with
application-specific progress metrics and provides the application runtime with the num-
ber of hardware contexts allocated by MAPPER that the runtime can use to better control
the degree of concurrency.

MAPPER monitors applications using perf to access relevant low-overhead hardware perfor-
mance counters, which enables detection, identification, and separation of the causes behind poor
performance and parallel efficiency. The performance analysis then informs the policies used in
resource allocation to meet combined application and system-wide efficiency goals. Resource allo-
cation is effected by controlling the number and location of hardware execution contexts allocated
to an application using Linux cgroups.

In our evaluation, we define quality of service (QoS) in terms of a percentage of an applica-
tion’s performance when using a fair share (static resource allocation based on the number and pri-
ority of applications) of execution contexts. Importantly, we derive a normalized efficiency metric
that allows comparisons across and cooperation among applications to meet individual application
QoS and overall system efficiency requirements.

Finally, MAPPER also provides an interface for direct communication with an application’s run-
time to dynamically effect task control. An application-defined progress metric may be provided
through the runtime to MAPPER, allowing MAPPER to more accurately relate application progress
with resource allocation and usage. Conversely, MAPPER allows the runtime to query for infor-
mation on the number of allocated hardware contexts, which the runtime may use to control the
degree of concurrency (the number and size of tasks created) of the application based on appli-
cation scalability. We choose the OpenMP application programming interface to demonstrate the
benefits of task control.

Our results using MAPPER demonstrate performance improvements for both standalone and
multi-programmed workloads. Using a QoS guarantee of 85% of the IPC achieved when an appli-
cation receives its fair share of resources, MAPPER achieves speedups relative to Linux of up to
3.3× and a geometric mean speedup of 1.17× across all workloads. When combined with parallel
runtime cooperation (specifically, OpenMP), MAPPER achieves a mean speedup of 1.44× compared
to Linux. At the same time, MAPPER violates QoS for only 2% of applications in our test suite (com-
pared to 23% for Linux), with the worst case achieving 81% (compared to 9% for Linux) of fair share
performance for individual applications. MAPPER achieves this efficiency and QoS in a manner
transparent to the application developer and user.

The rest of the article is organized as follows: Section 2 discusses some of the prior work in
this domain, which we organize thematically. In Section 3, we introduce our system design and
discuss implementation details. Section 4 presents the results of our evaluation, and we conclude
with Section 5.

2 PRIOR WORK

Offline approaches: Several works have examined the efficiency of offline performance predic-
tion [6, 8, 14, 20, 25]. Pandia [20] creates an offline workload model requiring multiple runs of the
target application to identify the impact on parallel efficiency of the application’s resource demand,
parallel fraction, data sharing, load balancing, and need for computational resources. The method-
ology does not consider multiple applications sharing resources and cannot adapt to workloads
with heterogeneous, dynamic phases of computation or data-dependent behavior. ReSense [14]
uses offline characterization to understand application sensitivity to different shared hardware
resources. Sensitivity scores are used to map threads to cores to minimize contention. Paral-
lelism is not dynamically controlled, and offline characterization is not reliable for data-dependent
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computations. HOLISYN [6] collects hardware performance counters offline to characterize appli-
cations and rank them by their resource utilization. Schedules of applications that run together
are created by grouping applications with differing resource utilizations to minimize contention.
Resources are allocated to minimize overall energy delay product. ESTIMA [8] uses stall cycles
from smaller core counts to predict scalability at larger core counts using an offline approach.
In contrast, MAPPER uses an online approach and targets both single- and multi-application
scenarios.

Runtime control of parallelism: Prior work has focused on separating hardware context al-
location from task scheduling for applications using user-level threads [2, 27]. Callisto [21] is a
threading library and resource management layer for parallel runtime systems such as OpenMP.
Callisto’s goal is to maximize hardware utilization while providing fairness in resource utiliza-
tion. Each application is assigned its fair share of high-priority worker threads that are pinned
to unique hardware contexts without attention to application/thread placement. Additional low-
priority workers are pinned to other hardware contexts. Low-priority workers compete to run
tasks when the high-priority thread on the corresponding context is stalled, thereby improving
utilization. To avoid the need for preemption to ensure fairness, worker threads dynamically pick
short tasks at a fine granularity from a task pool. Callisto’s granularity requirement potentially
adds additional coordination overhead and loss of locality. LIRA [11] augments Callisto by using
load instruction rate to colocate the high-priority threads of applications with the largest differ-
ence in rates onto the same socket for best performance. The load instruction rate may not reflect
locality in the program, nor does it differentiate traffic due to capacity or coherence. By contrast,
MAPPER does not dictate the use of fine-granularity tasks, thereby avoiding the extra coordina-
tion and potential loss of locality induced by the use of a fine task granularity. MAPPER directly
takes parallel efficiency and QoS into account when modifying fair-share allocation of hardware
contexts to applications. With the help of multiple performance counter-based metrics, MAPPER
performs application/thread placement to reduce resource saturation and harmful interference and
minimize communication overheads due to data sharing.

Varuna [43] uses Amdahl’s law, along with added parameters for degradation or improvement
due to environmental factors, to model performance. Parallel and sequential regions are initially
profiled sequentially to provide timing inputs to the model. Linear regression of execution time
data from three parallel configurations, with periodic recalibration to detect changes in the exe-
cution environment, is used to project performance at a particular core count. Varuna controls
the degree of parallelism for an application to minimize time or resource consumption, but does
not take the impact of placement on resource contention into account. Feedback-driven thread-

ing (FDT) [47] uses a training phase created via parallel loop peeling (of the first few iterations
of a parallel loop) to measure critical section execution time and parallel loop bandwidth needs
(using hardware performance counters). These measurements then feed an analytical model to
determine the number of threads that will result in the best performance and lowest power con-
sumption. Depending on the application’s bottleneck, either synchronization-aware threading or
bandwidth-aware threading is applied. FDT focuses on parallel applications running in isolation
and does not take the impact of thread placement into account.

Similar to MAPPER, NuPoCo [10] targets both degree of parallelism and thread-to-core map-
pings using OpenMP as an example platform, but using different techniques. NuPoCo uses a queu-
ing model to maximize overall system utilization when allocating cores at the granularity of a
whole socket to colocated applications. MAPPER allows allocation at the granularity of individ-
ual cores and uses both QoS and parallel efficiency instead. NuPoCo uses a hill-climbing algo-
rithm to determine the mapping of applications across sockets when memory bandwidth is the
bottleneck. MAPPER uses performance counter information to identify whether sharing, memory
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bandwidth, or CPU utilization is the application’s bottleneck and makes decisions accordingly. As
the most closely related work, we compare MAPPER against results presented in Reference [10] in
Section 4.5.5.

Cluster management: Bubble-up [32] predicts application co-location for memory-intense
latency-sensitive workloads by learning memory pressures and sensitivity of each application in a
controlled setting. Q-Clouds [33] targets virtualized environments on cloud platforms, monitoring
performance in a continuous feedback loop to determine whether additional resources are required
to meet an application’s SLA. Off line learning is required to train the interference and resource
efficiency model. Quasar [13] and Heracles [30] allocate resources to applications using extensive
off line characterization and data from multiple sampling runs to predict resource interference.
Arachne [38] and ZygOS [37] introduce task management techniques for achieving microsecond
latencies. PerfIso [24] colocates service and batch workloads using a variable number of idle cores
to absorb variations in load of the service-oriented application. Mesos [22] offers resources to
application runtimes based on a dominant resource fairness metric [19]. The runtimes can respond
by accepting all or certain resources that were offered based on the requirements of the application.
Omega [41] presents all resources to runtime systems, enabling them to compete for currently
available resources or plan to acquire more resources in the future. Argo [16, 36], designed for
exascale computing, organizes processes into resource groups called “enclaves.” These enclaves
can be organized into a hierarchy with subenclaves. The analogue of Argo’s enclaves in our work
is the cpuset cgroups controller, which allows a group to claim a subset of the system’s processor
and memory nodes. POW [17] complements Argo with a dynamic scheduler that redistributes
power budgets between nodes by reclaiming wasted power (difference between power consumed
and budget allocated) to increase the power budget for nodes whose consumption was closest to
the allocation. These related works do not identify or adjust for resource interference.

Power management: Hoder [42] uses a learning-based approach to simultaneously tune de-
gree of parallelism and DVFS (dynamic voltage and frequency scaling) for individual OpenMP
applications running in isolation. PUPiL [49] uses a hybrid approach to improve multi-application
power/performance, using hardware-based DVFS control to meet a power cap while relying
on a software module to explore the configuration space using binary search. The power and
application-specific performance feedback from the exploration is then used to determine the best
configuration in a manner that is agnostic of the underlying bottlenecks. MAPPER works for both
individual and multi-application workloads and directly monitors multiple hardware bottlenecks,
using the information to both control the degree of parallelism and to map applications to specific
hardware resources in a two-step process.

Cache Allocation: Several methods look to dynamic cache partitioning for performance im-
provement [5, 39]. These methods focus on a single socket and do not alter an application’s degree
of parallelism. Utility-based cache partitioning [39] uses cost-effective hardware-based per-core
cache utility monitoring (based on MPKI) to feed a last-level cache (LLC) partitioning algorithm.
Dynamic set sampling is used to reduce hardware overheads and make it cost-effective. CDCS [5]
proposes a combined approach to thread and data placement for better performance in a non-

uniform cache architecture (NUCA) with the goal of minimizing access latency. Cache banks
are partitioned and managed as virtual caches, allowing software to allocate capacity and distrib-
ute data placement across banks at a fine granularity. Threads are placed on cores to minimize
access latency to the virtual caches.

3 MAPPER DESIGN AND IMPLEMENTATION

MAPPER consists of five key components: a parallel application launcher; a performance monitor;
a resource allocator; a resource mapper; and an interface to parallel runtimes to allow application
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Fig. 1. MAPPER design and information flow.

progress metric definition as well as to provide feedback on allocated hardware contexts. Figure 1
provides an overview of these components and the information flow among them. Application
management requires both resource allocation and mapping. The performance monitor, resource
allocator, and resource-aware mapper are implemented in a centralized daemon executing in priv-
ileged mode. Algorithm 1 outlines the actions performed by the daemon.

ALGORITHM 1: MAPPER Algorithm

1: MAPPER Periodicity: default=1 sec

2: minQoS: default = 0.85

3: history: default length = 2

4:

5: Monitor performance:

6: for appI D ∈ apps do

7: calculate_per f ormance_metr ics (per f Counters[appI D], pr evPer f , curr Per f )
8: updateHistory (history, curr _cor eCnt )
9: end for

10:

11: Allocate resources:

12: for appI D ∈ apps do

13: per f Chanдe ← calcDelta (pr evPer f /pr ev_cor eCnt, curr Per f /curr _cor eCnt )
14: if per f Chanдe > per f _T hr eshold ∨ at_r andom

15: Explore core count changes informed by performance metrics

16: Change core count based on FairCoreCnt and minQoS

17: sor tApplications (N ormEf f )
18: More efficient applications steal spar e_cor es from less efficient ones

19: end if

20: end for

21:

22: Map resources:

23: Sort apps by bottleneck: data sharing > memory bandwidth > compute

24: for appI D ∈ sor ted apps do

25: compute r esidency_scor e to preserve locality

26: map according to bottleneck

27: end for
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Table 1. Per-Thread Information Obtained from the
Performance Monitor

Inter-socket coherence R × RHM/C

Intra-socket coherence R × (SH + SHM )/C

Memory bandwidth R × LLC-misses/C

IPC instructions/C

C = unhalted cycles, R = clock rate, RH M = remote-hit-modified,

SH = snoop-hit, SH M = snoop-hit-modified, LLC-misses = last

level cache misses [12].

3.1 Application Launcher

To participate in parallel efficiency regulation, applications are launched by the MAPPER appli-
cation launcher. The launcher runs the application in a child process and registers the child PID
with the MAPPER daemon. The daemon establishes a process group for the application under the
cgroup cpuset subsystem. The process tree in the /proc file system under the application’s main
process PID is traversed to compile the process group for the application. The threads of the appli-
cation are monitored by the performance monitor. Using write calls to the pseudo-filesystem of
the cpuset subsystem, we can control the CPU mask of all child processes of the application. All
child processes belonging to the application are attached to the application-specific subgroup. Dy-
namically created children are automatically assigned to the same cgroup. The /proc file system
traversal for registered applications is repeated at each interval to detect and begin monitoring the
dynamically created children.

3.2 Performance Monitor

Performance monitoring for an application begins when it is instantiated. MAPPER currently does
not leverage information gathered in prior executions and instead adapts to application behavior
for the current instantiation and input data. For each registered application instance, the perfor-
mance monitor gets information about application behavior from low-level hardware performance
counters (using the Linux performance event subsystem (perf [26])). For each thread of the appli-
cation, the monitor specifies a set of hardware events that need to be monitored. perf periodically
reads per-task hardware performance counters and gathers this information over time. This infor-
mation is used to determine the characteristics of each thread and the application as a whole.

MAPPER uses metrics derived from hardware performance counters commonly available on
modern processors to assess application resource bottlenecks [44, 45]. On the Intel Xeon CPU E7-
4820, we use five hardware performance counters and six performance events to compute four
application per-thread performance metrics (Table 1).

The performance event counts of all threads of an application are aggregated to obtain per-
application event counts (resource demand). Whether the application is memory-intensive or data-
sharing-intensive (implying a high degree of cross-core data communication) is determined by
comparing the application’s resource demand (from all of its associated tasks) to system capability
(obtained via a one-time offline profiling). Table 2 lists the information currently maintained by
the monitor in MAPPER, which includes IPC and the current number of active threads for each
application.

In the event that a progress metric is not specified by the application, our runtime system uses
IPC values obtained from perf (averaged over all active threads in the application) as a measure of
progress. IPC as a measure of progress has the inherent flaw of capturing useless work, for example,
spinning on a synchronization variable. Techniques to eliminate measurement while spinning (pos-
sible if all application synchronization occurs through the runtime) help mitigate these flaws. Our

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 18. Publication date: March 2022.



18:8 S. Srikanthan et al.

Table 2. Per-Application Information Supplied from the Monitor and Used by the Resource-aware Mapper

Data sharing bottleneck Total aggregate coherence activity

Memory bottleneck Total aggregate memory accesses

Number of threads Number of active threads

IPC Average per-thread instructions retired per cycle

experiments with microbenchmarks and OpenMP show that aggregate IPC tracks performance
fairly well if the runtime is modified to identify and eliminate spinning from the measurement.

3.3 Resource Allocation

To allocate resources across applications in a fair manner, our implementation places MAPPER’s
resource allocation and mapping outside the parallel runtime and inside a separate privileged dae-
mon. The MAPPER daemon pools knowledge of individual co-running application’s scaling char-
acteristics to better allocate resources to applications that use them more efficiently. This process
is carefully moderated to provide well-defined performance guarantees to each application.

The MAPPER daemon is responsible for allocating and mapping resources to registered and
simultaneously executing applications. Applications that run in the absence of others will have ac-
cess to all system resources. Ideally, in these cases, MAPPER will pick the mapping and resource al-
location that results in the best performance. For applications that scale well, the best performance
is attained when using all available resources. For others, a reduction in resource assignment could
result in better performance.

MAPPER relies on information from perf to tune and control application parallelism and prevent
saturation of resources critical to both application and system-wide performance. For example,
applications that saturate memory bandwidth may benefit from a reduction in number of threads
to keep queuing delays to a minimum. Applications without any perceived hardware bottlenecks
may benefit from an increased number of threads. To avoid repeated bad decisions, the MAPPER
daemon maintains a history of application performance at different degrees of parallelism.

In this article, we focus on hardware context allocation while taking resource bottlenecks into
account. The MAPPER daemon maintains a per-application count of the number of worker threads.
Applications are initially granted a fair share (FairCoreCnt) of hardware contexts, depending on
the system load. Assuming equal priority, we divide the total available cores uniformly across all
running applications; for example, four registered parallel applications with sufficient parallelism
to utilize the whole machine will be granted 25% of the hardware contexts.2

Using data collected over the application execution, MAPPER calculates the parallel efficiency at
different core counts (number of cores used). The performance that applications can fairly expect
to achieve (MaxFairPerf ) is calculated based on the application performance data available for the
first n core counts, where n is the application’s fair share of CPU cores.

FairCoreCnt =
∑

CPU _Cores/
∑

MAPPER_Applications (1)

MaxFairPer f = Max (∀k<F airCor eCntPer f [k]) (2)

MinGuaranteedPer f = MinQoS ×MaxFairPer f (3)

Each application is guaranteed a minimum performance (Equation 3) defined as being within a
specified percentage (MinQoS) of MaxFairPerf (Equation 2). MAPPER can then determine the num-
ber of cores it can spare (to a better scaling application) based on this lower limit on performance.

2In our results, we assume that applications have equal priority; other strategies may be possible, depending on application

priorities and/or grouping, and could be implemented as an unequal allocation of cores.
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We use a value of 85% for MinQoS in our experiments (see Section 4 for a sensitivity analysis). To
determine the number of spare cores, MAPPER first estimates the difference between the minimum
guaranteed performance and the performance at the current core count. This extra performance is
calculated as a fraction of the total performance achieved at the current core count. A fraction of
cores equal to the fraction of extra to current performance is then estimated as spare cores (Equa-
tion 4). This calculation makes the conservative assumption that performance is linear with the
number of cores, which is typically not the case, allowing us to ensure that MinQoS indeed places
a lower bound on performance. It should be possible to adopt other application-specific definitions
of progress and their associated notions of minimum QoS. We do not explore them in this article.

ExtraPer f = Per f [CurrThr ] −MinGuaranteedPer f (4)

SpareCores = (ExtraPer f ∗CurrThr )/Per f [CurrThr ] (5)

In the absence of an application-specific progress metric, instructions per cycle (IPC) is used
as a measure of progress. We define performance (Perf), a measure of progress, as the sum of the
IPCs (or application-specific metric if defined) of each core used in a parallel execution.

An efficiency metric as shown in Equation (6) is calculated for each application. Parallel effi-
ciency (a measure of performance relative to the resources used to achieve it) at n cores is usually
defined asT1/(Tn ×n), whereT1 is the execution time when using one core andTn is the execution
time atn cores: essentially the speedup divided by the core count. The expectation of this efficiency
calculation is that single core (sequential) execution efficiency is 1. Since our calculations are dy-
namic and in terms of progress toward the eventual goal of application completion, we slightly
modify this definition. We define parallel efficiency at a particular core count as the execution’s
progress metric (Perf ) divided by the core count (shown in Equation (6a)). Since this parallel effi-
ciency is defined in terms of an application-specific progress metric (even baseline IPC varies as a
function of the computation), we then use a normalization factor (similar to the expectation that
sequential execution has an efficiency of 1). We choose the maximum efficiency across all core
counts as a normalizing factor (6b). Using this normalizing factor, a new normalized efficiency
is calculated for every core count (6c). A value of 1 at a particular core count indicates that the
application is at its highest efficiency (as known to MAPPER at that point in time). If and when
MAPPER identifies a more efficient core count, these values will be updated to reflect the change.
The normalized efficiency (NormEff ) allows cross-application comparison when improving overall
system efficiency.

The normalized parallel efficiency is generally expected to be close to 1 for scalable applications.
It is possible for the normalized efficiency to be significantly less at lower core counts if the appli-
cation experiences super-linear speedup at higher core counts. Super-linear speedup can occur if
the data used for computation by each thread fits within a faster and higher level of the memory
hierarchy. This can happen occasionally, since a smaller degree of parallelism can often increase
the data handled on a per-thread basis thereby spilling over to slower but bigger caches/memory.
It is also possible for parallel efficiency to fall off with increasing number of threads (due to excess
synchronization, context switching overheads, higher contention, etc.).

∀k≤Cor eCntE f f [k] = Per f [k]/k (6a)

MaxE f f = Max (∀k≤Cor eCntE f f [k]) (6b)

∀k≤Cor eCntNormE f f [k] = E f f [k]/MaxE f f (6c)

Applications are prioritized according to their parallel efficiency and any free hardware con-
texts or spare cores from applications that scale more poorly are reallocated to the higher effi-
ciency applications so long as quality of service requirements are met for each application. If an
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application can benefit from more resources (for example, when it is in an exploratory phase) than
it is currently using, then free resources in the system are allocated to it. When free resources are
absent, MAPPER attempts to allocate spare cores from an application whose parallel efficiency is
less than its own. If any application sees a drop in performance (5%) below MinQoS due to granting
its resources to other applications, then the reallocation is reverted.

An application running under MAPPER is typically in one of two states: steady or exploratory.
Steady state is entered at the end of an exploratory phase, during which a configuration that meets
QoS and system efficiency goals is chosen. The runtime system continually monitors performance.
Periodically, if performance changes significantly or new hardware bottlenecks are detected (and
occasionally even without performance change to capture any gradual changes), then the runtime
system transitions the application to exploratory state. The period may be dynamically adjusted
based on application behavior [4].

During an exploration phase, MAPPER uses an application’s parallel efficiency information
(which reflects the existence of bottlenecks) to determine the direction of configuration change.
The number of threads in the configuration explored is reduced for applications that saturate
memory bandwidth and increased for applications without any perceived hardware bottlenecks.
Information on application bottlenecks and behavior may also help reduce the number of unnec-
essary states explored. In particular, if the application is a source of heavy coherence traffic (inter-
or intra-socket), then the degree of parallelism is changed in multiples of cores within a socket
to enable localization of coherence traffic within as few sockets as possible. If the new configu-
ration results in improvement (we use a 5% threshold) in performance, then the change is made
permanent and exploration continues in the same direction (whether an increase or decrease in
active parallelism). If the new configuration results in reduced performance, then the previous
configuration is restored and the application is transitioned to stable state.

3.4 Resource Mapping

In addition to decisions on the number of hardware contexts to allocate to each application,
MAPPER also carefully maps application threads to specific hardware contexts based on CPU,
memory, cache, and interconnect resource needs using a refinement of the heuristics used by
the SAM system [44, 45], which includes grouping threads by application. Input to this decision-
making strategy is a priority-based sorted list of applications with each application listed using its
critical bottleneck. Most modern multiprocessor systems have a number of hardware resources,
all of which may or may not be utilized by every application. To arrive at the application’s critical
bottleneck, we develop microbenchmarks to perform a one-time characterization of the system’s
capability by stressing hardware resources, one at a time. During this characterization phase, we
monitor each microbenchmark using hardware performance counters. Data from the counters help
us arrive at thresholds that can be used to detect bottlenecks in application performance.

The applications are sorted according to the priority of the hardware bottleneck exhibited: (Data
sharing (coherence traffic) bottleneck >Memory bandwidth bottleneck > Compute (IPC)). Within
each category, applications are sorted based on how severely they contribute to the overall bot-
tleneck. Applications with higher contributions are given higher priority for resource mapping.
The resource mapper walks this sorted list and determines the mapping strategy using the ap-
plication’s bottleneck information maintained as already shown in Table 2. Mapping strategies
decide whether to colocate threads on the same core (if sharing- but not CPU-intensive), on the
same socket (if sharing- and CPU-intensive), whether to spread them across sockets (if memory-
intensive), or avoid hyperthreads (if CPU-intensive) based on core availability and the application’s
critical bottleneck.
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The above mapping strategy can assign one of many possible topological configurations of
hardware contexts to an application. To preserve locality and minimize migrations, MAPPER at-
tempts to minimize differences between successive cpuset mappings. When the system has multi-
ple sockets, this problem is magnified, and so MAPPER generates a sorted list of sockets for each
application, reflecting a preference for application thread placement based on the chosen mapping
strategy.

For strategies that require colocation, sockets are sorted in descending order of the application’s
residency score, which is the total number of hardware contexts already allocated to that applica-
tion within each socket. The residency score is used to minimize the data movement and cache
warmups induced due to thread migration. When new hardware contexts are allocated to the appli-
cation, MAPPER will attempt to accommodate them in sockets with the highest scores. If the prior
mapping decision spread the application threads across sockets either due to unavailability of hard-
ware contexts (for colocation) or due to change in type of hardware bottleneck, then MAPPER will
prefer to colocate them to the highest scored sockets in the current decision-making interval. Nat-
urally, when applications need to relinquish resources they are released from the lowest non-zero
scored sockets.

When the mapping strategy necessitates distributing hardware contexts across sockets, the sock-
ets are sorted in ascending order of their residency scores. If additional hardware contexts are
allocated to the application, then they are placed on the sockets with lowest scores (wherever pos-
sible). Conversely, if hardware contexts are taken away from an application, then those on the
highest-scored sockets are freed.

Within each selected socket, contexts that are already occupied by the application are retained
when possible to further minimize migrations. Compute-intensive threads are preferably placed
on physical cores that are occupied by hardware threads that are not compute bound.

When hardware contexts that satisfy the mapping strategy are not available on any socket,
MAPPER attempts to pick hardware contexts that will result in the least amount of resource
contention (whether CPU, cache, or interconnect). MAPPER’s resource allocation and mapping
decisions constitute a complementary two-step process that when combined eliminates the need
to explore the entire state space of possible mappings of nPc , where n is the number of threads and
c is the number of contexts.

3.5 MAPPER Runtime Interface: Parallelism Regulation

As described in Section 3.1, applications participating in parallel efficiency regulation are launched
by the MAPPER application launcher. If the application runtime so chooses, then it may use the
launcher both to communicate additional application-specific progress metrics and to determine
current application-specific MAPPER resource allocation. Figure 1 shows the information flow be-
tween an application runtime and MAPPER, which takes place via a shared memory segment es-
tablished between the daemon and the launcher. Runtime systems may choose to use the returned
information on resource allocation to change task creation and granularity.

Example Use in OpenMP: Upon application initialization, the number of active threads in
OpenMP is set as specified by the user or to any default value set in the system. If no such value is
specified, then the runtime determines the number of hardware contexts available in the machine
and sets the number of threads to this value. In OpenMP, active application parallelism can be
controlled in two different ways. The most direct method to control the active numbers of threads
is to change the size of the thread pool that performs the parallel computation. We modify OpenMP
to control the thread pools used to execute a parallel region at the beginning of a parallel region
(defined by #OMP parallel).
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However, once a parallel region is currently executing, threads may no longer be added or re-
moved without changes to the application’s parallel structure. We can, however, change the num-
ber of active threads for each loop or other OMP task construct within the parallel region. OMP
loops may be either statically or dynamically scheduled. To control the parallelism for static loops,
we modify the GCC compilation code to introduce a parallelism_control function call at the begin-
ning of these constructs. The parallelism_control function is called independently by every thread
within the parallel region and is used to select the threads from the current worker pool that
will participate in the current OMP computation. The remaining threads are queued at a barrier
and may be used for the next OMP construct, depending on changes in resource allocation. OMP
dynamic loops are implemented by having worker threads request tasks to execute upon com-
pletion of the previous task; if no additional tasks are found, the thread queues at a barrier. We
modified the code within the OpenMP library so excess worker threads (determined by calling
parallelism_control) go directly to the barrier without looking for new tasks. Thus, the finest gran-
ularity of control within OMP is at the level of these parallel constructs. Our modifications do not
restructure the computation, its granularity, or its load balance and are compliant with OpenMP
specifications.

We modified the OpenMP parallel constructs to interface with the launcher thread at these safe
points to effect changes in the degree of parallelism and thereby reduce potential load imbalance
and synchronization overheads. Additionally, when runtimes can change parallelism in response
to MAPPER, synchronization and other runtime-related overheads can be reduced, making perfor-
mance counter information more reflective of the actual computation performed by the worker
threads. The alternative would be to modify the runtime to disable performance counters while
executing synchronization and other thread creation/deletion code. This would be expensive and
can misdirect MAPPER about real CPU contention or data sharing introduced due by spinning
synchronization or other runtime code.

We also added support for application-specific progress reporting by using a shared array with
dedicated entries per application thread, padded to prevent false sharing. Application developers
can use a newly introduced function call within OMP parallel constructs to manipulate this ded-
icated entry to imply application progress. This information is then aggregated by the modified
runtime and passed to MAPPER. We do not use this feature in our evaluation.

4 EVALUATION

4.1 Experimental Setup

Our experiments were conducted on a quad-socket machine with each socket equipped with an
Intel Xeon CPU E7-4820 v3 running at 1.90 GHz. The Xeon CPU E7-4820 is from Intel’s Haswell
processor family and contains 10 physical cores with 2 hardware contexts (logical threads) in each
physical core, as well as an on-chip 25 MB of shared last level cache (L3). Each socket is also
equipped with 64 GB (four 16 GB DIMMs) of local DRAM memory for a total of 256 GB memory in
a four-socket NUMA configuration. We use Linux kernel 4.17.11 and its perf subsystem to access
the hardware performance counters. Modifications to OpenMP were performed on top of gcc-8.1.0.

4.2 Workloads and Their Characteristics

To evaluate our MAPPER system, we use different benchmark applications gathered from PARSEC-
v3 [7], OMPSCR-v2 [15], and NAS Parallel Benchmarks [3]. We also use increasingly widely used
graph-based applications that perform machine learning, data mining, pattern recognition, and
computer vision [23, 28, 29, 31, 40, 50]. PARSEC contains applications that perform routing for
chip designs, calculate content similarities, video encoding, image processing, and itemset mining.
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Table 3. Characteristics of Non-OpenMP Applications

Application Parallelization Model Bottlenecks Standalone Performance

SVD [G] Data-parallel High Data Sharing and CPU-intensive 78.53 secs

SGD [G] Data-parallel High Data Sharing 61.57 secs

BSGD [G] Data-parallel High Data Sharing 64.84 secs

LSGD [G] Data-parallel High Data Sharing 66.88 secs

PMF [G] Data-parallel Medium Data Sharing and CPU-intensive 130.865 secs

ALS [G] Data-parallel Medium Data Sharing and CPU-intensive 187.42 secs

RBM [G] Data-parallel High Data Sharing 69.68 secs

Blackscholes [P] Data-parallel Low Data Sharing and CPU-intensive 30.4 secs

Canneal [P] Unstructured High Data Sharing 53.67 secs

X264 [P] Pipelined Low Data Sharing and CPU-intensive 28.22 secs

Ferret [P] Pipelined Medium Data Sharing and CPU-intensive 12.18 secs

Freqmine [P] Data-parallel High Data Sharing and CPU-intensive 33.476 secs

Swaptions [P] Data-parallel Low Data Sharing 16.915 secs

Fluidanimate [P] Data-parallel Low Data Sharing and Memory-intensive 24.923 secs

Memcached [C] Data-parallel Low Data Sharing and Memory-intensive p99 lat: 11.75 ms

In-memory-analytics [C] Data-parallel Memory-intensive Throughput: 0.19

Mediastreaming [C] Pipelined CPU and Memory-intensive Net I/O per sec: 299408.9

For [G]raphChi/[P]ARSEC applications performance is measured in terms of execution time (using all available

hardware contexts) denoted in seconds. For [C]loudsuite benchmarks each benchmarks has different performance units

as denoted.

OMPSCR contains applications implemented using OpenMP that perform kernel computations im-
portant to scientific computing including jacobi, gaussian elimination, mandel-brot simulations,
and molecular dynamics. NAS Parallel benchmarks include OpenMP applications that compute
conjugate gradient, multi-grid mesh solver, 3D Fast Fourier Transformations, and Scalar Penta-
diagonal solver. We also evaluate our methodology on the Cloudsuite [18, 35] benchmarks, which
range from popular latency-critical workloads like Memcached to memory/network through-
put oriented In-memory-analytics and Mediastreaming workloads, respectively. These service-
oriented workloads are of interest to cloud service providers to gauge their system performance.

We highlight characteristics of these applications and their standalone performance (using all
available hardware contexts) in Table 3. The OpenMP applications are data-parallel with very little
data being shared among the threads of the application. With the exception of molecular dynamics,
these applications are very scalable and rely on both CPU and memory bandwidth.

4.3 Scheduling Policies

To identify the benefits and tradeoffs in the MAPPER resource allocation and mapping, we com-
pare against a fair share and a hill-climbing approach to resource allocation, as well as against the
default Linux scheduler (Linux’s Completely Fair Scheduler). In the case of the hill-climbing and
MAPPER schedulers, the interval for periodic exploration is set to 1 second and the exploration is
performed in increments of four hardware contexts. All schedulers use cpuset to control thread-
to-core mappings. MAPPER uses resource- and contention-aware policies for mapping, while the
fair share and hill-climbing schedulers use the Linux default mapping of application to hardware
contexts (which distributes application threads across sockets, avoiding hyperthreads if free hard-
ware contexts are available).

MAPPER scheduler. Our MAPPER policy allocates each new application its fair share of re-
sources. In every iteration, MAPPER generates a resource estimate (number of hardware contexts)
for each application as a function of system load (number of other applications and their needs)
and application need. The per-application resource estimate is aided by information on hardware
bottlenecks, which also determines how the applications are mapped onto hardware contexts in
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the machine (Section 3.4). Following the per-application resource estimation, MAPPER determines
a per-application final resource allocation based on the parallel efficiencies and QoS measurements
of all other co-running applications.

Fair share scheduler. Fair share, as the name suggests, allocates resources equally to all concur-
rently executing applications. For Modified OpenMP applications, Fair-share provides feedback to
the OpenMP runtime so the runtime may choose to match active threads to allocated resources.

Hill-climbing scheduler. Our hill-climbing scheduler starts with a fair-share allocation for each
application and iteratively and incrementally explores the impact on IPC or the application-specific
progress metric of increasing/decreasing hardware context allocation to an application. Appli-
cation performance bottlenecks are not examined. Hill-climbing searches for a maxima in the
progress metric, with periodic random perturbation to adapt to application and environment
changes. Similar to the Fair-share scheduler, for Modified OpenMP applications, hill-climbing pro-
vides feedback to the runtime to modify its allocation. Unlike MAPPER, the hill-climbing scheduler
is not bottleneck-aware.

Linux completely fair scheduler. The Linux load balancer balances load based on the total number
of active threads in the system. This creates an incentive for applications to create more threads
than there are hardware contexts. Applications that are composed of more threads will be able to
acquire a larger share of CPU time slices.

MAPPER, Fair share, and Hill-climbing adopt the approach of isolating applications on exclu-
sive hardware contexts but retain the load balancing within each application’s set of hardware
contexts. Comparing MAPPER’s performance with Fair share will demonstrate the benefits of
resource-aware application management. Comparing MAPPER’s performance with Hill-climbing
allows us to evaluate the benefits of identifying resource bottlenecks in comparison to using a
single IPC metric. Comparing all three schedulers with the default Linux approach highlights the
tradeoffs between resource partitioning and sharing.

4.4 Standalone Parallel Applications on MAPPER

When applications run standalone, they have access to all resources in the machine. Using all
available resources would be the default mode (standalone performance depicted in Table 3) unless
the application exhibits better performance if fewer resources are used. MAPPER attempts to find
this performance peak for those applications that do not scale sufficiently to be able to utilize all
resources.

Among applications in our workload, MAPPER finds the peak performance for the graph-based
applications Single Value Decomposition (SVD), Stochastic Gradient Descent (SGD), Biased

SGD, and Alternating Least Squares (ALS) to be at 20 hardware contexts. The performance im-
provements obtained are: 4.8%, 4.1%, 8.2%, and 4.8%, respectively. Due to the applications exhibiting
significant data sharing, MAPPER also attempts to colocate the applications within as few sockets
(one socket on our four-socket 80-core experimental platform) as possible to localize communica-
tion. Other applications are run with the full resources in the system.

4.5 Multiprogrammed Workloads

With multiple simultaneously executing applications, the scalability of individual applications is
load-dependent in addition to being data- and hardware-dependent. We evaluate the benefits of
using MAPPER when applications share resources with each other on the same machine. We split
the evaluation into three parts. First, we study the performance of applications whose runtimes are
not modified to interact with MAPPER. Next, we investigate the effectiveness of MAPPER when
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Table 4. Reallocation Statistics for the Multiple Application Mixes (Figure 2 (Two Application Mixes) &
Figure 3 (Three/four Application Mixes))

Application Mixes
MAPPER HILL FAIR

N C N C N C

80 canneal, 80 SGD 0.76 8.06 0.67 7.97 0.061 1.99

80 canneal, 80 BSGD 0.74 7.8175 0.60 7.04 0.10 2.55

80 canneal, 80 LSGD 0.77 7.98 0.59 6.25 0.081 2.56

80 canneal, 80 SVDPP 0.82 9.41 0.63 8.21 0.091 2.8

80 canneal, 82 x264, 80 SVDPP 1.30 10.34 1.45 13.18 0.378 4.2

80 SGD, 80 canneal, 80 LSGD 1.165 8.74 1.41 13.99 0.58 7.65

82 x264, 80 SVDPP, 80 LSGD 1.43 10.96 1.54 19.43 0.71 9.27

80 freqmine, 82 x264, 80 SGD 1.54 13.12 1.33 15.11 0.43 5.76

80 canneal, 80 blackscholes, 80 SGD, 80 SVDPP 1.83 13.13 1.84 16.17 0.21 2.89

80 canneal, 80 SGD, 80 SVDPP, 80 BSGD 1.61 10.71 1.97 19.95 0.21 3.28

80 SGD, 80 SVDPP, 80 BSGD, 80 LSGD 1.60 10.88 1.55 19.87 0.373 6.15

80 x264, 322 ferret, 80 canneal, 80 SVDPP 1.70 10.72 1.70 15.81 0.385 4.62

80 freqmine, 80 ferret, 80 SVDPP, 80 LSGD 1.13 8.16 1.84 18.11 0.385 4.62

80 freqmine, 80 x264, 80 SGD, 80 BSGD 2.14 17.50 1.84 19.49 0.42 6.79

80 SGD, 80 SVDPP, 80 ALS, 80 RBM 1.78 14.73 1.85 21.08 0.54 9.58

N Represents the Number of Times cpuset is Called Per Second, C Represents the Number of Context Migrations per

Second.

interfaced/integrated with the application runtimes using OpenMP as an example runtime. Fi-
nally, we perform an evaluation that combines applications from modified and unmodified runtime
systems.

When running multiple applications simultaneously, we run the longest (runtime-wise) appli-
cation three times. To ensure concurrent execution of the workloads across the entire execution of
each constituent application, the shorter applications run continuously in a loop until all iterations
of the longest application are completed. The experiment is repeated five times and the arithmetic
mean of runtimes is used to calculate speedups. Geometric mean speedups of individual applica-
tions are calculated, followed by the geometric mean for the workload mix. In all the graphs, the

whiskers (error bars) indicate the range (minimum and maximum) of speedups achieved

by the individual applications in the workload mixes and are NOT a representation of

the variance of the mean speedup.

4.5.1 Parallel Application Evaluation without Runtime Integration. Figures 2 and 3 present the
geometric mean of speedups (relative to standalone execution time of each application using the
full resources of the machine on Linux) with two-application and 3-4-application workload mixes
without runtime integration with MAPPER. The mixes consist of PARSEC and GraphChi [29]
benchmarks and except where noted are run with the maximum number of contexts supported by
the system. In general, the expectation is that speedups will be less than 1 due to resources being
shared (in time and/or space) across multiple applications. Speedups greater than 1 indicate either
that the application has higher performance at a lower core/thread count or that MAPPER is able to
identify and alleviate bottlenecks as well as reduce communication costs by exploiting locality. The

workloads and mixes were chosen to maximize the range of characteristics explored (parallelization

strategies and data and resource sharing behavior) rather than present every data point.
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Fig. 2. Geometric mean of speedups (normalized to standalone execution time on Linux; higher is better)
achieved by applications in 2-application multiprogrammed workloads using the “MAPPER,” “Fair share,”
“Hill climbing,” and “Linux completely fair” schedulers.

Fig. 3. Geometric mean of speedups (normalized to standalone execution time on Linux) achieved by appli-
cations in a 3-4-application multiprogrammed workload using the “MAPPER,” “Fair share,” “Hill climbing,”
and “Linux completely fair” schedulers.

Table 4 shows the Number of times cpuset is called per second and the number of context migra-
tions per second for application mixes in Figures 2 and 3. These migrations contribute to overheads
but also correlate to the performance impact. The specific workload mix, number of hardware con-
text changes due to bottleneck changes, and phased characteristics, combine to affect the overall
performance.

Overall, MAPPER is able to modestly outperform Linux (by 6.63%) while Fair share and Hill
Climbing perform worse than Linux. The geometric mean of all application mix speedups in Fig-
ure 2 is 0.848 for MAPPER, 0.800 for Linux, 0.750 for Hill Climbing, and 0.699 for Fair share. In
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Figure 3 the speedups are 0.708 for MAPPER, 0.667 for Linux, 0.607 for Hill Climbing, and 0.599
for Fair share.

GraphChi applications have significant data sharing and therefore incur high inter-socket co-
herence activity. Consequently, they scale poorly with the addition of threads due to increasing
pressure on the inter-socket interconnect and benefit from co-location onto as few sockets as
possible. Applications like ALS from GraphChi also have additional memory/memory bandwidth
requirements. MAPPER is aware of the poor scaling and inter-thread communication and guides
its exploration to reduce the hardware contexts allocated to the application while simultaneously
packing them into as few sockets as possible, leading to improved performance and efficiency. The
resource allocation and mapping decisions together lead to significantly improved performance.

The best performance with MAPPER is obtained when data sharing-intensive applications are
run together. In this scenario, MAPPER is able to localize data sharing and isolate each applications’
communication within one socket, thereby improving overall performance. Speedups greater than
1 can be expected due to eliminating the cost of inter-socket communication. The maximum perfor-
mance gain of MAPPER over Linux is 39% for application mix SVD-freqmine. Within this workload
mix, SVD shows the highest individual performance gain over Linux of 60%. The highest individual
speedup attained by any application is 12% greater in MAPPER compared to Linux.

x264 and ferret are pipelined applications from the PARSEC [7] benchmark suite. They create a
much larger number of threads than hardware contexts for some pipeline phases. As a result, they
benefit from the Linux scheduler’s load balancer, which distributes the threads across all cores,
resulting in x264 and ferret getting a larger share of the compute power, especially when the
co-running application scales poorly. The strategy of exclusive division of CPU resources among
applications (hardware context isolation) employed by MAPPER, Fair share, and Hill Climbing pro-
hibits computational resource sharing across applications, significantly hurting performance for
Fair share and Hill Climbing. MAPPER is able to mitigate the impact of hardware context isolation
by detecting the co-running GraphChi application’s poor scaling and allocating more CPUs to the
PARSEC applications, while also reducing communication latencies for GraphChi workloads by
co-locating them on as few sockets as possible. Additionally, when both ferret and x264 are in the
workload mix, Linux’s load balancer hurts performance when compared to MAPPER.

The worst performance loss observed with MAPPER relative to Linux is 11% for ALS-canneal.
Within this workload mix, MAPPER loses 18% performance for ALS over Linux. ALS has signifi-
cant memory requirements, resulting in the need for high memory bandwidth, but also exhibits
phased execution. The tradeoffs of colocation of all threads within a socket for better locality ver-
sus distribution for better bandwidth affect its performance.

From a QoS perspective, a QoS target of performance with a Fair-share allocation of resources
(primarily compute) is a common default expectation. We use 85% of Fair-share performance as
the target QoS for application performance in MAPPER, providing some flexibility in resource
allocation to meet the QoS requirements.

Using a QoS guarantee of 85% of the IPC achieved with a fair-share scheduler, MAPPER meets
the QoS guarantee for all mixes except one, where canneal achieves 81% of the fair-share sched-
uler’s IPC when co-run with freqmine, SVD, and LSGD. In contrast, Linux violates QoS guaran-
tees in four cases, with fluidanimate being the worst performer when co-running with SGD and
LSGD, achieving 73% of fair-share performance. It is important to note that the geometric mean
of minimum speedups for Figures 2 and 3 combined are 0.630, 0.529, 0.546, and 0.612 for MAPPER,
Fair-share, Hill Climbing, and Linux, respectively. In other words, MAPPER improves the mini-
mum speedup provided to any application in a workload mix by 19% on average when compared
to Fair-share. Specifically, MAPPER outperforms Fair-share both via better mapping decisions and
by using fewer resources (better resource allocation) when applications do not scale.
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Fig. 4. Geometric mean of speedups (normalized to (Modified OpenMP + Fair-share) execution time)
achieved by applications in a multiprogrammed OpenMP workload using modified OpenMP + MAPPER
and vanilla OpenMP running directly on Linux (higher is better).

For the remainder of the evaluation, we use Fair share scheduling as the baseline for comparison
of both performance and QoS.

4.5.2 Evaluation of Integrated OpenMP Runtime. Figure 4 shows the impact of modifying the
OpenMP runtime to integrate with the MAPPER scheduler on the performance of multiple appli-
cation workloads. Specifically, OpenMP utilizes information on the number of allocated hardware
contexts to control the application’s task granularity and synchronization. In Figure 4, the speedup
of each multi-application workload mix is calculated by taking the geometric mean of each con-
stituent application’s execution time normalized to when run using Modified OpenMP + Fair-share.
Note that our normalization baseline also takes advantage of runtime integration. We use
MAPPER’s default IPC information collected from hardware performance counters to reason about
application progress.

Modified OpenMP with the MAPPER scheduler has a geometric mean speedup relative to Linux
of 1.442×. Workload mix moldyn,multigrid achieves the highest gain of 3.33× compared to Linux.
These speedup numbers show the importance of runtime integration in managing co-running
parallel applications. The performance improvements with our OpenMP applications arise from
MAPPER’s ability to provide feedback to OpenMP to adjust application parallelism, which in turn
reduces oversubscription, synchronization, and other wasteful overheads. There is significant per-
formance benefit that can be realized even for highly scalable applications.

Moldyn benefits significantly from MAPPER’s elimination of oversubscription (by oversubscrip-
tion, we mean applications that use higher thread counts than assigned hardware contexts) when
running with other applications (a normalized speedup relative to Fair-Share performance of up
to 1.092 on MAPPER when running with mandel, relative to 0.127 on Linux, an order of magnitude
improvement). Significant improvements in performance are also observed for gauss, scalarpenta,
and multigrid.

MAPPER’s QoS-based resource allocation along with hardware context isolation is able to
mostly eliminate, or at least mitigate, QoS violations, while improving or maintaining Fair-share
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Fig. 5. Geometric mean of speedups (normalized to (Modified OpenMP + Fair-Share) execution time)
achieved by applications in multiprogrammed non-OpenMP and OpenMP workload mixes using modified
OpenMP + MAPPER and unmodified OpenMP running directly on Linux (higher is better).

performance. Specifically, applications such as conjgrad that exhibit poor scalability allow scalable
applications such as mandel and 3D FFT to achieve higher performance than Fair-share. However,
this comes at the cost of QoS violations. MAPPER isolates the hardware contexts allocated to each
application, but enables mandel and 3D FFT to borrow hardware contexts from conjgrad (up to 4)
due to conjgrad’s poor scalability. This tradeoff leads to an overall improvement in performance
with greatly improved QoS relative to Linux. QoS guarantees (of being within 85% performance of
Fair-share) are slightly compromised, however, due to our current resource allocation granularity
of four hardware contexts: conjgrad achieves a speedup of 0.836 and 0.788 (relative to Fair-share
scheduling) when run with mandel and 3D FFT, respectively, compared to 0.458 and 0.818 for Linux.
All other applications meet the minimum QoS guarantee when running with MAPPER.

MAPPER’s worst speedup is 0.93 for the workload mix conjgrad,mandel. In contrast, Linux’s
worst speedup is 0.3 for the workload mix moldyn,multigrid. Benchmark conjgrad achieves the
worst individual speedup of 0.79 on MAPPER when running with 3dfft. For Linux, it is moldyn
that achieves a speedup of 0.12 when co-run with mandel. MAPPER’s worst-case performance is
6% below the QoS target, while the worst case on Linux is 73% below the QoS target. MAPPER
violates QoS in only two instances in our test cases compared to Linux’s 13 violation instances.

4.5.3 Combined Workload Evaluation. Figure 5 shows the impact of MAPPER for combinations
of modified/integrated OpenMP applications and applications using other runtimes. MAPPER
achieves a geometric mean speedup of 1.20× compared to Linux. The geometric mean speedup
relative to Modified OpenMP + Fair-share is 1.11 for MAPPER and 0.925 for Linux. The geomet-
ric mean of the minimum speedups for MAPPER and Linux are 1.028 and 0.822, respectively, and
the mean for maximum speedups is 1.201 and 1.043, respectively. Ferret-moldyn achieves the best
performance gain of 1.75× compared to Linux.

Data sharing-intensive applications such as SGD and SVD benefit significantly from resource-
aware mapping performed by MAPPER. SGD and SVD workload mixes improve by 31% and 34%,
respectively, over Linux. The resource-aware mapping enables efficient task placement and re-
source sharing with the other co-running applications. MAPPER is able to reduce the number
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of hardware contexts and constrain the (poorly scaling) data-sharing applications to one socket
(to localize communication), thereby freeing up resources for the co-running workloads and si-
multaneously improving the performance of both applications. Jacobi, 3D FFT, and gauss benefit
significantly from the availability of more hardware contexts. x264 also benefits from co-location
of its threads during phases of computation when the data sharing is high. Unlike the GraphChi ap-
plications, x264 is not restricted to a single socket, since the application scales well with increasing
number of threads.

MAPPER improves the performance of workload mixes with ferret by 21% over Linux. The
speedup of ferret alone (individually within the workload mix) relative to Linux is 0.86, however.
This slowdown relative to Linux stems from the fact that ferret running on Linux competes for
resources using its 322 threads (compared to other applications’ 80 threads). This oversubscription
leads to a larger share of CPU time, resulting in significant performance inequities (e.g., ferret-
moldyn).

The worst speedup achieved is 0.93 and 0.53 for ferret-moldyn when run using MAPPER and
Linux, respectively. The worst individual speedup achieved is 0.88 for gauss in SVD-gauss for
MAPPER and 0.24 for moldyn when running with ferret for Linux. MAPPER meets the QoS re-
quirements for all applications. In contrast, Linux violates QoS in four instances, in some cases (as
for moldyn above) showing a dramatic reduction in performance relative to Fair-share.

4.5.4 Service-oriented Workloads. Three benchmarks from Cloudsuite [18, 35] are used to eval-
uate the performance of service-oriented applications on multisocket systems using MAPPER:
latency-sensitive Memcached using a 300MB Twitter dataset and a single server with 80 threads;
throughput-oriented In-memory-analytics, a recommender system using a Netflix database to rank
the top 50 movies for the requester; and network-intensive Mediastreaming, where an Nginx web
server is used as a streaming server to host videos of various lengths and qualities.

Note that applications in these workload mixes may demonstrate speedups of more than 1 or
close to 1 even in multi-workload scenarios mainly due to non-overlapping resource needs. For
example, for Mediastreaming, the resource bottleneck is network bandwidth and I/O compared
to data locality and memory for SGD; thus both applications can perform close to or better than
standalone performance.

Figure 6 shows the performance of the Cloudsuite benchmarks when multiprogrammed with
Parsec and Graphchi benchmarks. Our performance metric is the normalized (to Fair-share behav-
ior) p99 latency for Memcached, throughput (movies ranked/sec) for In-memory-analytics, and
network bandwidth (I/O/sec) for Mediastreaming. The geometric mean speedup for MAPPER is
1.0538 compared to Linux’s 0.944 normalized to Fair-share performance. Focusing on the Cloud-
suite benchmarks, MAPPER achieves a speedup of 0.856 compared to 0.725 with Linux across all
mixes. MAPPER meets the QoS requirements of the Cloudsuite benchmarks in all but 1 of 19 cases,
specifically, for Memcached (achieving 71% of fair-share performance) when running with BSGD.
Linux violates QoS requirements of the Cloudsuite benchmarks in nine cases, with the lowest
performance being for Memcached (achieving 58% when co-running with BSGD).

GraphChi/PARSEC workloads are representative of best-effort workloads when co-run with
the Cloudsuite benchmarks. The GraphChi/PARSEC workloads attain a speedup of 0.906 with
MAPPER versus 0.861 with Linux. MAPPER is able to achieve a 1.18× performance improvement
over Linux for Cloudsuite benchmarks in the application mixes and 1.05× for best-effort workloads
(PARSEC/GraphChi).

Memcached: MAPPER achieves an average p99 latency that is 24.6% lower than that with
Linux for Memcached. For example, when running with BSGD, the recorded p99 latency while run-
ning with MAPPER is 17.12 ms compared to 20.69 ms when running with Linux. The higher the
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Fig. 6. Performance (compared to Fair-shared performance) for Cloudsuite applications using MAPPER and
Linux (IA=In-memory-Analytics, MS=Mediastreaming, and MC=Memcached).

measure of normalized performance, the lower the latency. MAPPER identifies resource bottle-
necks, needs, and sharing behavior, which benefits Memcached by better thread placement for
localized memory access. Application mixes with Memcached running on MAPPER achieve a geo-
metric mean speedup of 1.178× compared to Linux.

In-memory-analytics: Normalized performance for workload mixes containing In-memory-
analytics is 1.02 for Linux and 1.05 for MAPPER. Normalized performance of In-memory-analytics
is 1.06 when running with MAPPER vs. 0.926 when running with Linux. In-memory-analytics has
14.44% higher throughput when running with MAPPER compared to when running with Linux.
Workloads co-run with In-memory-analytics gain only 2.23% over Linux.

However, when co-running with ferret on Linux, In-memory-analytics loses significant perfor-
mance (resulting in a large violation of QoS) as a result of Linux’s load-balancer providing more
compute contexts to ferret due to its large thread count. MAPPER is able to meet the QoS re-
quirements for both applications, avoiding Linux’s large performance variance and significant
QoS violation. The MAPPER algorithm identifies the memory locality and bandwidth needs of In-
memory-analytics. Through its iterative process, it also ensures QoS for In-memory-analytics and
does not allow ferret to steal additional compute resources.

Mediastreaming: Mediastreaming and mixes with Mediastreaming performs 11% better on av-
erage with MAPPER when compared with the baseline Linux system. When run with x264 on
MAPPER, the normalized performance of Mediastreaming is 1.23, compared to 0.89 on Linux. Me-
diastreaming sees a significant improvement in performance, since MAPPER can identify memory
bottlenecks and distribute threads across sockets to better utilize available resources.

Service-oriented workloads are critical workloads that are not tolerant to performance degra-
dation, as it directly impacts business needs. We observe that the geometric mean speedup for
service-oriented workloads in the workload mixes is 1.036 for MAPPER compared to 0.873 for
Linux when normalized to Fair-share performance. This shows that for workload mixes like the
ones depicted in Figure 6, MAPPER is able to allocate resources and map the component applica-
tions to simultaneously ensure QoS and improve overall system efficiency.
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Fig. 7. Hmean of speedup relative to standalone execution for the workload-mix depicted in Figure 12 of
Reference [10] for MAPPER and NuPoCo. NuPoCo values have been taken directly from Figure 12 of
Reference [10].

4.5.5 Comparison with NuPoCo [10]. To avoid any configuration issues with a port of NuPoCo
to our platform resulting in its performance degradation, we compare NuPoCo to MAPPER by
replicating the experiments in Figure 12 from Reference [10] using MAPPER. As a result, the
evaluation methodology in this section differs from that in the rest of the article. In particular,
following NuPoCo methodology, each application in a workload mix is run once with all the ap-
plications starting at the same time. As a result, the number of co-running applications decreases
as applications complete their execution. Similarly, we use a harmonic mean to match NuPoCo’s
methodology. We present our results against those presented in Figure 12 of Reference [10] in
Figure 7. While a direct comparison is not possible due to differences in platform architecture and
environment, a qualitative comparison may be made.

Except for KM, all the workloads in the mixes are from the NAS parallel benchmark suite [3].
BT, FT, and SP are CPU and memory-intensive but with differing execution times (FT runs for the
shortest duration out of these three). EP is embarrassingly parallel and does not access memory
but has a very short execution span. KM is kmeans from the Rodinia benchmark suite [9] and is
run with an input set of 3,000,000 objects and with a cluster parameter of 5.

In Figure 7, we see that MAPPER’s speedup is higher than NuPoCo’s on average across these
workload mixes and is consistently higher for the 3-workload mixes. The latter is likely a direct
result of NuPoCo’s resource allocation at the granularity of sockets. Performance is better than or
comparable to NuPoCo in most cases except for (8)BT+KM. This may be attributed to NuPoCo’s
focus on overall system utilization in contrast to MAPPER’s focus on ensuring QoS.

4.5.6 Sensitivity Analysis. We evaluate the impact of varying MAPPER’sminQoS and decision-
making interval using the combined workload mixes from Figure 5. Performance improvements of
29%, 28%, 20%, and 20% were obtained with MAPPER when compared to Linux for QoS thresholds
of 0.75, 0.8, 0.85, and 0.9, respectively. For these workload mixes, a QoS of 0.75, 0.8, and 0.85 did not
result in any minQoS violations. A QoS setting of 0.9 violated minQoS for six applications. These
violations have a geometric mean of 0.87, ranging from 0.84 to 0.89. This behavior demonstrates the
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limitations in approximating IPC information as application performance, as well as in adjusting
to dynamic application behavior, on MAPPER’s ability to manage QoS at high precision.

We also measured the impact of changing the decision making interval for the same combined
workload mixes (from Figure 5). For intervals of 20 ms , 100 ms , and 500 ms , speedup over Linux
is 11%, 18%, and 20%, respectively (20% with the default 1 sec interval). Changes to cpuset can
take effect in less than 2 ms , enabling MAPPER to respond quickly to changes in application be-
havior. MAPPER is capable of adapting to smaller decision-making intervals and can be combined
with dynamic-interval-based control techniques [4] to better respond to unpredictable applica-
tions. However, the performance penalty does increase significantly for very fine granularities
(less than 100ms), as overheads due to disturbances and migrations start to dominate.

4.5.7 Implementation Overhead. We use Linux’s perf subsystem’s interface (perf_event_
open [26]) to monitor desired events on a per thread basis. We find the overhead of using this
interface on application performance is negligible and within measurement error (ranging from
0.08%–0.56%). The single-threaded MAPPER daemon is responsible for performance counter setup
and reading, for determining resource allocation, and for performing the mapping (the latter in-
cluding cgroups to effect the mapping). When using a regulation interval of 1 second, MAPPER’s
daemon takes an average of 5 milliseconds (ms) when monitoring 80 threads, consuming 0.5% of
a single CPU’s time. Amortized over the 80 hardware contexts in the system, this amounts to an
overhead of 0.00625%. Of the 5 ms, 2.7 ms is spent setting up/reading performance counters3 for
each application and constituent thread, with most of the remaining time spent in the mapping
function.

5 CONCLUSIONS

We present a system to manage application performance via parallel efficiency regulation
(MAPPER) that provides performance portability in both standalone and shared environments.
We show that a normalized efficiency metric allows comparisons across and cooperation among
applications, enabling better QoS guarantees for each application while at the same time improv-
ing system-wide efficiency. MAPPER is able to combine low-overhead hardware counter-based
performance monitoring with sharing- and resource-aware mapping and cooperative control of
application parallelism to minimize resource contention and data communication costs, eliminate
over-subscription, and improve efficiency. MAPPER improves performance by up to 3.3× with
average speedups of 1.17× over Linux for multi-programmed workload mixes across all our test
cases. At the same time, MAPPER violates QoS for only 2% of the applications (compared to 23% for
Linux), while placing much tighter bounds on the worst case. OpenMP application mixes achieve
a geometric mean speedup of 1.44× over Linux, while Cloudsuite benchmark mixes perform 1.11×
better than Linux. MAPPER is able to improve individual Cloudsuite benchmark performance by
24.6%, 14%, and 11% for Memcached, In-memory-analytics, and Mediastreaming services, respec-
tively. MAPPER achieves these performance improvements while violating QoS (85% of fair-share
performance) in only 5% (1) of the workload mixes compared to 47% (9) of the workload mixes for
Linux.
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