
Dynamic GPU Acceleration of Linear Algebra
Computations

Princeton Ferro
University of Rochester

pferro@u.rochester.edu

December 18, 2017

Abstract

We investigate a way of running on the GPU software that per-
forms CPU linear algebra computations, without modifying program
code. We use a strategy called library interposition to affect how the
dynamic linker does symbol resolution on Basic Linear Algebra Subpro-
grams (BLAS), allowing us to supply a replacement that runs the linear
algebra computation on the GPU. This strategy is used by NVBLAS
to provide "drop-in" acceleration of BLAS. This strategy works mainly
for Level 3 BLAS because the overhead in transferring data to the
GPU is outweighed by the speedup in performing the matrix-matrix
computations. It falls short for Level 1 (vector-vector) and Level 2
(matrix-vector) routines where the execution is dominated by the data
transfer overhead. We consider a supplement to this strategy by inter-
posing malloc, free, and friends, allowing us to track use of memory
objects in BLAS routines. By collecting this information, we could
preemptively allocate shared memory between the CPU and GPU and
eliminate explicit data transfers, allowing for a greater throughput in
linear algebra computations. We evaluate the performance impact of
our approach on micro-benchmarks, as well as scientific computing
software such as GNU Octave.

1

Contents
1 Introduction 3

2 Related Work 3

3 Methods 3
3.1 Setup . 3
3.2 Library Interposition . 4
3.3 Tracking Objects . 4

4 Limitations 5

5 Results 5
5.1 Micro-benchmarks . 5
5.2 Octave . 7
5.3 Conclusions . 8

6 Acknowledgments 9

2

1 Introduction
Many researchers use scientific packages like NWChem to simulate physical
interactions, or scripting environments like Octave and NumPy to process
data. Linear algebra computations are employed for these tasks. These
computations are encapsulated into optimized subroutines in a library like
Intel MKL, OpenBLAS, or LAPACK, which all run on the central processor.
However, the graphics processor is better-suited to performing many linear
algebra computations with a high degree of parallelism. Improving perfor-
mance in these intermediate calculations has the potential to significantly
increase efficiency in research that relies on this scientific software.

NVidia’s CUDA runtime allows programmers to run code written in the
CUDA language on the GPU. There also exist runtimes for the C, C++,
Fortran, and other languages. Perhaps one reason why software hasn’t taken
advantage of this runtime is the effort needed to write a GPU-based layer for
existing code, while maintaining another layer for devices that don’t have
NVidia GPUs. Another factor is the desire to be portable to other GPUs,
which is not supported by CUDA. A runtime solution would avoid these
drawbacks.

2 Related Work
NVidia’s NVBLAS [nvb17] tackles the same problem domain, using library
interposition to accelerate BLAS Level 3 routines, but not Levels 1 and
2. The reason is that Level 3 routines are computation-intensive matrix-
matrix operations, so for large matrices the execution time is dominated
by computation on the CPU. Hence, moving this computation to the GPU
reduces computation time more than it increases data transfer overhead.
This is not the case for vector-vector and vector-matrix operations. This is
not an ideal solution for a few reasons:

1. Level 1 and 2 routines are not GPU-accelerated due to the data trans-
fer overhead. However, it may be possible for certain computations to
see a speedup if the data transfer overhead could be overcome.

2. Even though Level 3 routines are accelerated, the implementation must
still perform manual memory transfers before and after kernel execu-
tion. This incurs overhead.

3 Methods

3.1 Setup

We developed software to run on Linux-based operating systems. Our ap-
proach to GPU-acceleration uses NVidia’s CUDA environment. Our tests

3

are on Centos 7 with an NVIDIA Quadro M4000 with 8GB DDR5 and an
Intel Xeon E7 v4 with 32 threads at 2.80 GHz.

3.2 Library Interposition

Linux’s dynamic linker, ld.so, recognizes the LD_PRELOAD environment vari-
able, which specifies a shared object to load first, causing all subsequent sym-
bol resolution to go through this library. We use this approach to override
cBLAS (cblas_*) and BLAS routines.

3.3 Tracking Objects

We also use library interposition to override some of the memory manage-
ment routines in the GNU C Library (malloc, realloc, and free). We
define an allocation as any call to malloc or a similar memory management
routine, and a deallocation as any call to free on a valid object. On an
allocation, we record the address of the object along with requested size
and the return address. This is the call information, which is stored as the
object’s metadata.

There are two phases to object tracking:

Phase 1 We generate a trace of the desired program. The trace file con-
tains the information identifying each allocation by the requested size and
the saved return address in malloc’s stack frame. We select those allocations
that are for matrices and vectors that may later be passed as arguments to
a BLAS routine. This produces the trace in its final form.

Phase 2(a) Once we have the trace, we run the program again. At any
time malloc and calloc are called:

1. Compare the call information with the trace.

2. If the call information matches, allocate the object using the custom
memory manager and record the object’s metadata in a global struc-
ture. Otherwise, allocate using the standard memory management
routines from the C library, and do not track the object.

For the custom memory manager, we use cudaMallocManaged, which al-
locates a buffer that is shared between the CPU and GPU. Instead of us-
ing CUDA APIs to explicitly move data, this is done automatically by the
graphics driver on a page fault.[cud17]

Phase 2(b) When an overridden BLAS routine is invoked, we lookup the
pointer arguments in our storage of object metadata. Lookup takes O(log n),

4

where n is the number of tracked memory objects.1 If there is an entry, we
need not explicitly copy the argument to the GPU. Then we invoke the
equivalent CUDA API call for the BLAS routine.

4 Limitations
Because object tracking requires knowledge of the program counter offset,
which we use as an invariant between each program invocation, to obtain
this information requires unwinding the stack. However, there is more in-
volved. Recently, compilers have decided to omit using the frame pointer
(%ebp) register by default as an optimization.[Fou17] This complicates a
stack unwinding implementation. Furthermore, it is not enough to get the
saved instruction pointers of every frame, which change under ASLR. What
is invariant is the offset of the program counter within the current function.
But this information must be parsed from the debug information in other
sections of the program. This is what libunwind does.

Unfortunately, there is a significant performance cost associated with
debug-level stack unwinding, and this contributes majorly to the overhead
present in object tracking. Consequently, it was necessary to come up with
a more efficient approximation.

The approximate method was to take the differences between saved in-
struction pointers of successive calls in the call chain. Unfortunately, this
method does not work for ASLR. The data collected below was done under
ASLR and therefore does not reflect any potential benefit from the object-
tracking strategy.

5 Results
We compare our implementation, blas2cuda[Fer17], against NVBLAS + In-
tel MKL, and just Intel MKL.

5.1 Micro-benchmarks

We use Linux’s clock API to measure execution time for BLAS operations.
We timed matrix multiplication on square matrices of dimension up to n =
214. Below are the times in seconds for each computation.

1This metadata is stored using tsearch from the GNU C library, which is implemented
with a red-black tree.[gli17]

5

blas2cuda Intel MKL NVBLAS
General MM
n = 2 0.00001 0.00000 0.00000
n = 4 0.00001 0.00000 0.00000
n = 8 0.00001 0.00000 0.00000
n = 16 0.00001 0.00000 0.00000
n = 32 0.00005 0.00000 0.00000
n = 64 0.00005 0.00000 0.00002
n = 128 0.00002 0.00001 0.00008
n = 256 0.00008 0.00004 0.00029
n = 512 0.00020 0.00018 0.00226
n = 1024 0.00072 0.00098 0.00256
n = 2048 0.00291 0.00583 0.00479
n = 4096 0.00339 0.00451 0.00358
n = 8192 0.00598 1.01000 0.00783

Figure 1: General Matrix Multiplication

6

blas2cuda Intel MKL NVBLAS
MM with Complex
n = 2 0.00001 0.00000 0.00000
n = 4 0.00001 0.00000 0.00000
n = 8 0.00001 0.00001 0.00000
n = 16 0.00006 0.00004 0.00000
n = 32 0.00006 0.00006 0.00001
n = 64 0.00003 0.00006 0.00010
n = 128 0.00008 0.00005 0.00028
n = 256 0.00014 0.00012 0.00111
n = 512 0.00034 0.00045 0.00402
n = 1024 0.00135 0.00317 0.00509
n = 2048 0.00713 0.00394 0.00002
n = 4096 0.00018 0.00965 0.00932
n = 8192 2.01000 4.00000 2.01000

Figure 2: Matrix Multiplication with Complex Numbers

5.2 Octave

Octave only uses the {s,c,d,z}gemm Level 3 BLAS routine for matrix-
matrix multiplication. Below are the times in seconds for each computation.

7

blas2cuda Intel MKL NVBLAS
General MM
n = 2 0.00473 0.00010 0.00047
n = 4 0.00380 0.00010 0.00036
n = 8 0.00351 0.00011 0.00009
n = 16 0.00370 0.00010 0.00009
n = 32 0.01080 0.00012 0.00011
n = 64 0.01070 0.00027 0.00020
n = 128 0.00450 0.00075 0.00064
n = 256 0.01170 0.00172 0.00278
n = 512 0.02640 0.00839 0.07640
n = 1024 0.03370 0.05930 0.10500
n = 2048 0.07500 0.31300 0.13400
n = 4096 0.22600 1.86000 0.28700
n = 8192 1.09000 13.50000 0.84900

Figure 3: Matrix Multiplication - GNU Octave

5.3 Conclusions

The data show that a naive approach to GPU acceleration without object
tracking, even still, yields considerable performance gains of 2x to 10x. The
challenge of future work is to improve performance of stack unwinding and

8

stack walking, as well as to conduct more tests with other scientific software.

6 Acknowledgments
Thanks to Dr. Sreepathi Pai, who supervised this research. Thanks to the
Center for Integrated Research Computing at the University of Rochester
for providing resources. Thanks to the University of Rochester CS Lab
Staff, and James Roche in particular, for installing software needed for this
research.

References
[cud17] Data migration and coherency. https://web.archive.

org/web/20171120171620/http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#um-data-migration,
November 2017.

[Fer17] Princeton Ferro. blas2cuda - translation layer from blas to cuda
blas. https://github.com/Prince781/blas2cuda/, December
2017.

[Fou17] GNU Foundation. Options that control optimization.
https://web.archive.org/web/20170916171321/https:
//gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html,
2017.

[gli17] sourceware.org git - glibc.git/blob - misc/tsearch.c. https:
//sourceware.org/git/?p=glibc.git;a=blob;f=misc/
tsearch.c;hb=bfff8b1becd7d01c074177df7196ab327cd8c844,
January 2017.

[nvb17] Nvblas :: Cuda toolkit documentation. https://web.archive.
org/web/20170709180114/http://docs.nvidia.com/cuda/
nvblas/index.html, July 2017.

9

https://web.archive.org/web/20171120171620/http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-data-migration
https://web.archive.org/web/20171120171620/http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-data-migration
https://web.archive.org/web/20171120171620/http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-data-migration
https://github.com/Prince781/blas2cuda/
https://web.archive.org/web/20170916171321/https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://web.archive.org/web/20170916171321/https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://sourceware.org/git/?p=glibc.git;a=blob;f=misc/tsearch.c;hb=bfff8b1becd7d01c074177df7196ab327cd8c844
https://sourceware.org/git/?p=glibc.git;a=blob;f=misc/tsearch.c;hb=bfff8b1becd7d01c074177df7196ab327cd8c844
https://sourceware.org/git/?p=glibc.git;a=blob;f=misc/tsearch.c;hb=bfff8b1becd7d01c074177df7196ab327cd8c844
https://web.archive.org/web/20170709180114/http://docs.nvidia.com/cuda/nvblas/index.html
https://web.archive.org/web/20170709180114/http://docs.nvidia.com/cuda/nvblas/index.html
https://web.archive.org/web/20170709180114/http://docs.nvidia.com/cuda/nvblas/index.html

	Introduction
	Related Work
	Methods
	Setup
	Library Interposition
	Tracking Objects

	Limitations
	Results
	Micro-benchmarks
	Octave
	Conclusions

	Acknowledgments

