

OpenMP Fork/Join Optimization

Background

OpenMP is a programming model and standard for writing parallel
code in C, C++, and Fortran. For example, in C, if one wanted to
execute a multithreaded loop:

#include <stdio.h>
#include <omp.h>
int main(void) {
 #pragma omp parallel for
 for (int i = 0; i < 10; i++)
 printf("thread %d has %d\n", omp_get_thread_num(),
i);
}

The compiler is responsible for translating OpenMP directives
(#pragma omp ++.) into calls into the OpenMP runtime, which is
also responsible for supporting a programmer-visible API (omp_*
functions).

With the above example, the clang compiler will outline the body of
the for-loop (the parallel region) and translate the pragma into a
runtime-specific fork call that will run the outlined function on each
available thread (pseudo-IR):

define void omp_outlined(%thread_state) {
 +/ ++. iterate over my partition
}
define void main() {
 call @+_kmpc_fork_call(@.omp_outlined.)
}

Now consider the following code:

#include <stdio.h>
int main(void) {
 #pragma omp parallel
 {
 printf("hello (outside)\n");
 #pragma omp single
 {
 #pragma omp task
 printf("Hello 1\n");
 #pragma omp task
 printf("Hello 2\n");
 }
 }
}

In OpenMP, one can use #pragma omp task to specify a
piece of work. Tasks can be executed in any order and
other threads may execute tasks when they are idle.

Problem
Cray’s implementation of OpenMP can optimize thread
joining when it knows that tasks are not present in a
given parallel region. However, it is up to the compiler
to recognize these cases and pass this information to
the runtime. What complicates things further is that
tasks don’t have to appear lexically nested in a parallel
region. We can have a call to a function that invokes a
task, for example. The first step is understanding when
we can apply our optimization:

A parallel region/procedure P is “task-free” iff:
1. It contains no tasks
2. Every non-parallel procedure reachable from P

is task-free. (Since parallel regions are invoked
on a separate thread, it is okay for them to
contain tasks.)

(1) means that there is a list of runtime calls that
cannot appear in the procedure, and (2) means that
these runtime calls are not reachable in the control-
flow from P.
An algorithm for determining when we can apply our
optimization follows:

1. Mark all nodes (functions) as “may invoke task”
2. Convert the control-flow graph to a DAG of the

strongly-connected components.
3. In reverse-topological order, take each SCC and

mark all functions in the SCC as task-free iff:
1. There are no task-generating API functions

(determined with a list of blacklisted functions)
2. There are no undefined functions (external

calls)
3. The descendant SCCs of this SCC are all task-

free.
4. Repeat step 3 for all parent SCCs

0

20

40

60

80

64 threads / 1 thread per core

default
w/ optimization

CLOMP tests

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
(1

.0
x
)

0

40

80

120

160

128 threads / 2 threads per core

default

w/ optimization

CLOMP tests

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
(1

.0
x
)

0
10
20
30
40
50
60

128 threads / 4 threads per core

default

w/ optimization

CLOMP tests

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
(1

.0
x
)

0

40

80

120

256 threads / 4 threads per core

2 sockets

default

w/ optimization

CLOMP tests

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
(1

.0
x
)

Princeton Ferro
University of Rochester

Jeff Sandoval
Cray Inc.

The CLOMP tests perform a parallel computation with
four different scheduling configurations and compare
the speedup against a serial execution. The results
show improvements of up to 94% in execution
speedup, depending on what scheduler is chosen.

Other Projects
I have also worked on a few bug fixes for the clang
compiler for OpenMP support, as well as small
improvements to the libcraymp runtime, and I am
currently working on improved runtime debug
messages for OpenMP offloading.

Results
Applying this optimization improves performance
over an approximate optimization that marks
every parallel region as task-free if there are no
calls to task-generating functions anywhere in
the program. This is because we can still
optimize some parallel regions that don’t contain
tasks even if we see others that contain tasks.
Below are results from the CLOMP benchmark:

	Slide 1

